国家标准号:GB/T 36073-2018
标准名称:数据管理能力成熟度评估模型(DCMM)
一、范围和主要内容:该标准把组织内部数据能力划分为八个重要组成部分,描述了每个组成部分的定义、功能、目标和标准。
标准适用于信息系统的建设单位,应用单位等进行数据管理时候的规划,设计和评估。也可以作为针对信息系统建设状况的指导、监督和检查的依据。
二、数据成熟度评级等级
本标准将组织数据能力成熟度评价层级划分为五个等级:初始级、受管理级、稳健级、量化管理级和优化级,如下图:
01、初始级
数据管理的需求主要在项目级体现,没有统一的数据管理流程,主要是被动式管理,具体特征如下:
a.组织在制定战略决策时,未获得充分的数据支持;
b.没有正式的数据规划、数据架构设计、数据管理组织和流程等;
c.业务系统各自管理自己的数据,各系统之间的数据存在不一致的现象,组织意识到数据管理或数据质量的重要性;
d.数据管理仅根据项目实施的周期进行,无法核算数据管理、维护的成本。
02、受管理级组织已意识到数据是资产,根据管理策略的要求制定了管理的流程,指定了具体人员进行初步管理,具体特征如下:
a.意识到了数据的重要性,制定了部分数据管理规范,设置了相关岗位;
b.意识到了数据质量和数据孤岛是一个重要的管理问题,但目前没有解决问题的办法;
c.组织进行了初步的数据集成工作,尝试整合各业务系统的数据,设计了相关数据模型和管理岗位;
d.开始进行了一些重要数据的文档工作,对重要数据的安全、风险等方面设计相关管理措施。
03、稳健级数据已内当作实现组织绩效目标的重要资产,在组织层面制定了系列的标准化管理流程,促进数据管理的规范化,具体特征如下:
a.意识到数据的价值,在组织内部建立数据管理的规章和制度;
b.数据的管理以及应用能结合组织的业务战略、经营管理需求以及外部监管需求;
c.建立了相关数据管理组织、管理流程,能推动组织内各部门按流程开展工作;
d.组织在日常的决策,业务开展过程中能获取数据支持,明显提升工作效率;
e.参与行业数据管理的相关培训,具备数据管理人员。
04、量化管理级数据被认为是获取竞争优势的重要资源,数据管理的效率能量化分析和监控,具体特征如下:
a.组织层面认识到数据是组织的战略资产,了解数据在流程优化、绩效提升等方面的重要作用;
b.在组织层面建立了可量化的评估指标体系,可准确测量数据管理流程的效率并及时优化;
c.参与国家、行业等相关标准的制定工作;
d.组织内部定期开展数据管理、应用相关的培训工作;
e.在数据管理、应用的过程中充分借鉴了行业最佳案例以及国家标准、行业标准等外部资源,促进组织本身的数据管理、应用的提升。
05、优化级数据被认为是组织生存和发展的基础,相关管理流程能及时优化,能在行业内进行最佳实践分享,具体特征如下:
a.组织将数据作为核心竞争力,利用数据创造更多的价值和提升改造组织的效率;
b.能主导国家、行业等相关标准的制定工作;
c.能将组织自身数据管理能力建设的经验作为行业最佳案例进行推广。
三、价值 - 组织可准确掌握自身大数据管理和应用现状;帮助组织发现数据管理过程中存在的问题,结合其他组织较佳实践经验,给出针对性建议;
- 规范和指导组织的大数据发展,提升数据管理人员数据资产意识,传播数据管理较佳实践;
- 为组织建立数据能力提升体系;对组织的数据从业人员提供培训和指导,为组织培养大数据发展人才;
- 提供一年免费会员服务,从行业专家、较佳实践,行业研讨会、行业报告等多个层面开展相关服务,持续推动组织数据能力水平的提升。
四、DCMM评估流程